Thermoresponsive graphene oxide – starch micro/nanohydrogel composite as biocompatible drug delivery system

نویسندگان

  • Mina Sattari
  • Marziyeh Fathi
  • Mansour Daei
  • Hamid Erfan-Niya
  • Jaleh Barar
  • Ali Akbar Entezami
چکیده

Introduction: Stimuli-responsive hydrogels, which indicate a significant response to the environmental change (e.g., pH, temperature, light, …), have potential applications for tissue engineering, drug delivery systems, cell therapy, artificial muscles, biosensors, etc. Among the temperature-responsive materials, poly (N-isopropylacrylamide) (PNIPAAm) based hydrogels have been widely developed and their properties can be easily tailored by manipulating the properties of the hydrogel and the composite material. Graphene oxide (GO), as a multifunctional and biocompatible nanosheet, can efficiently improve the mechanical strength and response rate of PNIPAAm-based hydrogels. Here, hydrogel composites (HCs) of PNIPAAm with GO was developed using the modified starch as a biodegradable cross-linker. Methods: Micro/nanohydrogel composites were synthesized by free radical polymerization of NIPAAm in the suspension of different feed ratio of GO using maleate-modified starch (St-MA) as cross-linker and Tetrakis (hydroxymethyl) phosphonium chloride (THPC) as a strong oxygen scavenger. The HCs were characterized by FT-IR, DSC, TGA, SEM, and DLS. Also, the phase transition, swelling/deswelling behavior, hemocompatibility and biocompatibility of the synthesized HCs were investigated. Results: The thermal stability, phase transition temperature and internal network crosslinking of HCs increases with increasing of the GO feed ratio. Also, the swelling/deswelling, hemolysis, and MTT assays studies confirmed that the HCs are a fast response, hemocompatible and biocompatible materials. Conclusion: The employed facile approach for the synthesis of HCs yields an intelligent material with great potential for biomedical applications.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In vivo evaluation of the combination effect of near- infrared laser and PLGA polymer containing 5- fluorouracil – loaded Nano-graphene oxide

Introduction: Recently, nanographene oxide (NGO) is proven to be as a great candidate for drug delivery, and phototherapies cancer. Photothermal sensitivity of NGO and its optical absorption in the NIR region lead to photothermal ablation of tumors. Nevertheless, the major drawback of GO is its toxicity in biological systems, To overcome this problem, nanoscale GO prepare with...

متن کامل

Synthesis of new biodegradable nanocarriers for SN38 delivery and synergistic phototherapy

Objective (s): SN38 is the prominent and effective anticancer drug for treating various types of human cancers such as colorectal, ovarian and lung cancers. SN38 is highly toxic, and due to its poor solubility in aqueous media, and low stability and hydrolysis at physiological pH, it has not been used as an anti-cancer drug. To overcome these problems, SN38 was conjugated with new nanocarriers ...

متن کامل

Robust microcapsules with controlled permeability from silk fibroin reinforced with graphene oxide.

Robust and stable microcapsules are assembled from poly-amino acid-modified silk fibroin reinforced with graphene oxide flakes using layer-by-layer (LbL) assembly, based on biocompatible natural protein and carbon nanosheets. The composite microcapsules are extremely stable in acidic (pH 2.0) and basic (pH 11.5) conditions, accompanied with pH-triggered permeability, which facilitates the contr...

متن کامل

Fabrication of biocompatible and mechanically reinforced graphene oxide-chitosan nanocomposite films

BACKGROUND Graphene oxide (GO)can be dispersed through functionalization, or chemically converted to make different graphene-based nanocomposites with excellent mechanical and thermal properties. Chitosan, a partially deacetylated derivative of chitin, is extensively used for food packaging, biosensors, water treatment, and drug delivery. GO can be evenly dispersed in chitosan matrix through th...

متن کامل

Graphene Oxide for Biomedical Applications

Graphene oxide (GO) is one of the most promising functional materials used in various applications like energy storage (batteries and supercapacitors) sensors, photocatalysis, electronics and in biomedicine. The last 10 years literature on GO for biomedical applications revealed and confirmed the scope of its potential capabilities as biomaterial. GO alone and its modified form with different m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2017